Dark Sector Searches with Neutrino Experiments

Brian Batell
University of Chicago

2012 Project X Physics Study June 14 - 23, 2012 Fermilab

Plan

- Motivation for a dark sector
- Basic experimental setup; Rate estimates
- Current limits/sensitivities:
 - Dark photons, axions, dark higgs, dark matter ...
- For discussion: prospects with Project X?

Where are the new particles?

EWSB, Hierarchy

A Light Hidden Sector?

- Light SM gauge singlet matter and new forces weakly coupled to ordinary matter largely unconstrained
- Singlets exist in SM: L, e_R, d_R, u_R, H, N
- Many possibilities for very weak interactions
- Could address various experimental & observational anomalies
- Predicted in many BSM & top-down scenarios
- Discover new principles in unexpected places!

Hidden particles

- Dark photons
- Dark scalars
- Sterile Neutrinos
- PNGBs
- Dark Matter

Portal

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

$$(\mu S + \lambda S^2)H^{\dagger}H$$

LHN

$$\frac{\partial_{\mu}a}{f_a}\bar{\psi}\gamma^{\mu}\gamma^5\psi$$

$$\frac{1}{\Lambda^2}\bar{\chi}\chi\bar{q}q+\ldots,$$

$$g_{\chi}\phi\bar{\chi}\chi+g_{q}\phi\bar{q}q+\dots$$

Proton Beam - Target Setup

Event rate estimates:

$$N_{\mathrm{events}} = N_{\mathrm{prod}} \times P_{\mathrm{det}}$$

Production:

- I) Direct production: $N_{\mathrm{prod}} = \sigma(pA \to YX) \times (N_{\mathrm{POT}} n_T L_T)$
- 2) Decay of hadron: $N_{\text{prod}} = N_H \times \text{Br}(H \to Y + X)$

Detection (via decay to visible matter (e.g. leptons):

$$P_{\text{det}} \sim \gamma^2 \frac{d\Omega_{\text{lab}}}{4\pi} \left[\exp\left(-\frac{d}{\gamma v \tau}\right) - \exp\left(-\frac{d + R_d}{\gamma v \tau}\right) \right]$$

Experiments

Experiment	$N_{ m POT}$	Energy	d
CHARM	10^{18}	400 GeV	480 m
LSND	10^{23}	800 MeV	30 m
MiniBooNE	10^{21}	9 GeV	540 m
NuMI/MINOS	10^{20}	120 GeV	1 km

Dark Photons

Essig, Harnik, Kaplan, Toro

A' Decay Length cτ

$$c\tau \sim 100 \,\mathrm{m} \times \left(\frac{10^{-7}}{\kappa}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_V}\right)$$

Dark Photons

LSND

Production via

$$p + A \rightarrow \pi^0 + X$$

followed by

$$\pi^0 \to \gamma V \to \gamma e^+ e^-$$

BB, Pospelov, Ritz

Dark Photons

Essig, Harnik, Kaplan, Toro

LSND

Production via

$$p + A \rightarrow \pi^0 + X$$

followed by

$$\pi^0 \to \gamma V \to \gamma e^+ e^-$$

BB, Pospelov, Ritz

Dark Higgs

$$c\tau_{h'} \sim 100 \,\mathrm{m} \times \left(\frac{\alpha'}{\alpha}\right) \left(\frac{\kappa^2}{10^{-5}}\right)^{-2} \left(\frac{m_{h'}}{\mathrm{GeV}}\right)^{-1} \left(\frac{m_V}{2m_f}\right)^2$$

Dark Higgs

BB, Pospelov, Ritz

LSND: $\pi_0 \to \gamma V h'$

MiniBooNE: $\rho, \omega \to Vh'$

NuMi/MINOS $pA \rightarrow Vh'$

followed by

$$h' \rightarrow \ell^+ \ell^-$$

Pseudo-Nambu Goldstone Bosons

$\frac{d}{f}$

Essig, Harnik, Kaplan, Toro

PNGB Decay Length cτ

$$c\tau \sim 20 \text{m} \times \left(\frac{100 \text{ MeV}}{m_a}\right) \left(\frac{F}{10^4 \text{ GeV}}\right)^2$$

PNGBs

CHARM, LSND, MiniBoone, MINOS

Production via

$$p + A \rightarrow a + X$$

followed by

$$a \to \ell^- \ell^+$$

Essig, Harnik, Kaplan, Toro

Dark matter beam

Dark matter produced in decay of light mediator

$$\pi_0, \eta \to \gamma V$$

$$V \to \bar{\chi}\chi$$

Neutral current-like event:

$$\chi e \rightarrow \chi e$$

$$\chi N \to \chi N$$

BB, Pospelov, Ritz

Dark matter beam

deNiverville, Pospelov, Ritz

$$\pi_0, \eta \to \gamma V$$

$$V \to \bar{\chi} \chi$$

MiniBooNE

Dark matter beam

deNiverville, McKeen, Ritz

Project X: New high-intensity proton source

3 MW at 3 GeV potential for
$$\sim 10^{23} \, \frac{\rm POT}{\rm yr}$$

Closing thoughts

- Weakly-coupled, light particles are a generic & exciting possibility for physics beyond the Standard Model
- Can be systematically explored via portals
- Proton Beam-target experiments offer complementary sensitivity to other probes
- Provide another physics rationale for the experimental program at the intensity frontier

Question:

What is the best way to utilize/expand existing experimental infrastructure for a more comprehensive physics program? Especially in the context of Project X?

Backup

- How should hidden sector physics be probed with proton beams? Several levels:
 - A) Low-level: interpret existing searches from neutrino, muon, kaon, nuclear experiments.
 - B) Mid-level: suggest dedicated searches for hidden sector states/effects for neutrino, muon, kaon, nuclear experiments.
 - C) High-level: Carry out dedicated experiments to produce and detect hidden sector particles
 - Cost? Focus on beam-line? Target Detectors?
 Monitors? Can we make devices multi-purpose, e.g. muon & kaon facillities?

Where to gain in sensitivity?

Production:

Where to gain in sensitivity?

High Z?

$$N_{\text{events}} = N_{\text{prod}} \times P_{\text{det}}$$

Detection:

$$P_{
m det}\simeq\left[\gamma^2rac{\pi R_D^2}{d^2}
ight]rac{R_D}{\gamma c au}$$
 Target type, Closer detector? $P_{
m det}\simeq\sigma(YN o YN) imes\left[\gamma^2rac{\pi R_D^2}{d^2}
ight] imes n_DR_D$

Bigger Detector?

Scattering:

$$P_{\text{det}} \simeq \sigma(YN \to YN) \times \left[\gamma^2 \frac{\pi R_D^2}{d^2} \right] \times n_D R_D$$